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Received 5 May 2007, in final form 7 May 2007
Published 27 September 2007
Online at stacks.iop.org/JPhysCM/19/415110

Abstract
The full set of partial structure factors for glassy germania, or GeO2, were
accurately measured by using the method of isotopic substitution in neutron
diffraction in order to elucidate the nature of the pair correlations for this
archetypal strong glass former. The results show that the basic tetrahedral
Ge(O1/2)4 building blocks share corners with a mean inter-tetrahedral Ge–
Ô–Ge bond angle of 132(2)◦. The topological and chemical ordering in the
resultant network displays two characteristic length scales at distances greater
than the nearest neighbour. One of these describes the intermediate range order,
and manifests itself by the appearance of a first sharp diffraction peak in the
measured diffraction patterns at a scattering vector kFSDP ≈ 1.53 Å

−1
, while

the other describes so-called extended range order, and is associated with the
principal peak at kPP = 2.66(1) Å

−1
. We find that there is an interplay between

the relative importance of the ordering on these length scales for tetrahedral
network forming glasses that is dominated by the extended range ordering with
increasing glass fragility. The measured partial structure factors for glassy GeO2

are used to reproduce the total structure factor measured by using high energy
x-ray diffraction and the experimental results are also compared to those
obtained by using classical and first principles molecular dynamics simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Germania (GeO2) is, like silica (SiO2), an archetypal ‘strong’ glass forming material, a
taxonomy which stems originally from the Arrhenius temperature dependence observed for the
liquid viscosity η and which can be usefully used to describe many of the generic properties
of glass forming systems [1]. For strong liquids, a plot of ln η versus Tg/T gives a straight
line, where T is the absolute temperature and Tg is the glass transition temperature, whereas
large deviations from linearity are found for fragile liquids. Strong liquids, by contrast to their
fragile counterparts, commonly show a small change of heat capacity at Tg corresponding to
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a small change in the configurational entropy with temperature as the liquid solidifies into
the glassy phase [2]. Computer simulation studies show quantitative differences between the
potential energy landscapes of strong and fragile liquids that help to rationalize the experimental
observations [3–6].

There is evidence to suggest that the concept of fragility can be related to the microscopic
properties of a glass [7]. A correlation between the fragility of a glass forming liquid and
the Poisson ratio of the corresponding glass has also been reported [8], although later work
casts doubt on the reliability of this finding [9]. Strong liquids and glasses like GeO2 and
SiO2 form network structures which eventually collapse with increasing density and there
is often an accompanying increase in the number of structural configurations that can be
adopted. For example, whereas the network of glassy GeO2 at ambient conditions is built
predominantly from Ge-centred tetrahedral units, the Ge coordination number increases to six
at higher pressures [10–13]. Strong systems tend to become more fragile with increase of
density [4, 14, 15].

It is therefore important to understand the relation between the structure and relative
fragility of glass forming systems. Detailed information on the former is, however, notable by
its paucity, especially at length scales greater than the nearest neighbour which determine many
important aspects of liquid and glass phenomenology [16]. Recently, progress has been made
by employing the method of isotopic substitution in neutron diffraction to measure the full set
of partial structure factors for two network forming AX2 glasses, namely GeSe2 [17, 18] and
ZnCl2 [19]. By constructing the Bhatia–Thornton partial structure factors [20], the topological
and chemical ordering was examined and at distances greater than the nearest neighbour,
two length scales associated with the atomic ordering were identified [19]. One of these is
associated with an intermediate range and manifests itself by the appearance in the measured
diffraction patterns of a first sharp diffraction peak (FSDP) at a scattering vector kFSDP ≈ 1 Å

−1
.

The other is associated with an extended range which has a periodicity given by ≈ 2π/kPP

where kPP is the position of the principal peak at ≈2.1 Å
−1

. It is therefore crucial to understand
how this ordering affects the system properties e.g. in the case of network forming ionic melts
the density fluctuations relax much more slowly on length scales associated with the FSDP
compared with the principal peak [21]. In particular, what distinguishes the structure of a
strong glass such as GeO2 or SiO2 from that of ZnCl2 and GeSe2 which are much more
‘intermediate’ in character given that the dominant structural motif in all these systems is the
A(X1/2)4 tetrahedron?

We have therefore taken advantage of advances in neutron diffraction instrumentation [22]
to apply the method of isotopic substitution [23] to make the first accurate measurement of the
full set of partial structure factors for GeO2. Although these functions have previously been
estimated for GeO2, by combining one neutron diffraction pattern with two x-ray diffraction
patterns measured using anomalous scattering, the results are prone to systematic error and,
even in the most recent work, significant unphysical features can be identified [24–26]. For
example, the published partial structure factors correspond to a negative measured intensity
in the region of the FSDP [26] and the results have not allowed for a detailed investigation
of the glass structure at distances beyond the nearest neighbour. The partial structure factors
for glassy GeO2 have also been calculated from neutron and x-ray diffraction data by using
reverse Monte Carlo modelling [27–29]. This modelling procedure tends, however, to produce
the most disordered structure that is consistent with the data and imposed constraints [30]
and, in the most recent work, only two diffraction patterns were used in the refinement
procedure. The structure of amorphous, crystalline and liquid GeO2 has recently been reviewed
by Micoulaut et al [31] and the use of germania glass for fibre optics is described by Dianov
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and Mashinsky [32]. A preliminary account of the present work on glassy GeO2 is given
elsewhere [33].

The manuscript is organized as follows. Firstly, the theory that is required to understand
the experimental results is given, followed by the method of sample preparation and the neutron
diffraction experimental procedure. Next, the neutron diffraction results, at both the first order
difference function and partial structure factor levels, are presented. The structure of glassy
GeO2 on different length scales is then discussed and, to help elucidate the interpretation of
x-ray and neutron diffraction patterns taken under extreme conditions, the x-ray and neutron
total structure factors are reconstructed by using the measured partial structure factors. The
results for GeO2 are compared with those recently obtained by using classical [34–37] and first
principles molecular dynamics simulations [38, 39]. Finally, the results are also compared with
the structure of SiO2, with the structure of glassy GeO2 under pressure, and with the structure of
other tetrahedral network forming glasses such as ZnCl2 and GeSe2. The comparison suggests
that there is a competition between the ordering on the intermediate and extended length scales
which is won by the extended range order with increasing glass fragility.

2. Theory

In a neutron diffraction experiment on glassy GeO2 the coherent scattered intensity can be
represented by the total structure factor [40]

F(k) = c2
Geb2

Ge[SGeGe(k) − 1] + 2cGecObGebO[SGeO(k) − 1] + c2
Ob2

O[SOO(k) − 1] (1)

where Sαβ(k) represents a Faber–Ziman [41] partial structure factor and cα, bα denote the
atomic fraction and bound coherent scattering length of chemical species α, respectively. Let
the diffraction patterns be measured for three samples denoted by natGeO2, 70GeO2 and 73GeO2

that are identical in every respect except for their Ge isotope composition, where nat denotes the
natural isotopic abundance of germanium. The corresponding total structure factors, denoted
by nat F(k), 70 F(k) and 73 F(k) respectively, can then be represented in matrix notation by[ nat F(k)

70 F(k)
73 F(k)

]
=

[ 0.0744(4) 0.2111(5) 0.1497(2)

0.1097(21) 0.2563(25) 0.1497(2)

0.0297(4) 0.1334(10) 0.1497(2)

][ SGeGe(k) − 1
SGeO(k) − 1
SOO(k) − 1

]
(2)

where the weighting coefficients of the Sαβ(k) are quoted in units of barns (1 barn = 10−28 m2)

and were calculated by using b(70Ge) ≡ ′bGe = 9.94(10), b(natGe) ≡ ′′bGe = 8.185(20) and
b(73Ge) ≡ ′′′bGe = 5.17(4) fm, which correspond to the isotopic enrichments used in the
neutron diffraction experiment (see section 3), and bO = 5.803(4) fm [42].

By using two total structure factors it is possible to eliminate, for instance, the O–O
correlations by forming a first order difference function such as

�F (1)
Ge (k) = 70 F(k) − 73 F(k)

= c2
Ge(

′b2
Ge − ′′′b2

Ge)[SGeGe(k) − 1] + 2cGecObO(′bGe − ′′′bGe)[SGeO(k) − 1] (3)

where the Ge–Ge and Ge–O weighting factors take values of 0.080(2) and 0.123(3) barns,
respectively. Equivalent expressions hold for �F (2)

Ge (k) = 70 F(k) − nat F(k) and �F (3)
Ge (k) =

nat F(k) − 73 F(k). The full set of partial structure factors is obtained by inverting the scattering
matrix given by equation (2) to give[ SGeGe(k) − 1

SGeO(k) − 1
SOO(k) − 1

]
=

[ −170.7 107.9 62.8
111.1 −62.1 −49.0
−65.2 33.9 37.9

][ nat F(k)
70 F(k)
73 F(k)

]
. (4)

A measure of the conditioning of this matrix is provided by its normalized determinant
|An| = −0.006 [43]. This value compares, for example, with |An| = 0.011 for the experiment
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of Petri et al [17, 18] on glassy GeSe2 in which the full set of Sαβ(k) were successfully measured
by using the method of isotopic substitution in neutron diffraction. Extraction of the full set of
partial structure factors for GeO2 is therefore more challenging than for GeSe2.

The partial structure factors are related to the partial pair distribution functions, gαβ(r),
through

gαβ(r) = 1 + 1

2π2n0r

∫ ∞

0
dk k[Sαβ(k) − 1] sin(kr) (5)

where n0(= 0.0629(3) Å
−3

[44]) is the atomic number density of the glass. The total pair
distribution function corresponding to equation (1) is therefore given by

G(r) = c2
Geb2

Ge[gGeGe(r) − 1] + 2cGecObGebO[gGeO(r) − 1] + c2
Ob2

O[gOO(r) − 1] (6)

and the real space difference function corresponding to equation (3) is given by

�G(1)

Ge (r) = c2
Ge(

′b2
Ge − ′′′b2

Ge)[gGeGe(r) − 1] + 2cGecObO(′bGe − ′′′bGe)[gGeO(r) − 1]. (7)

The mean number of particles of type β contained in a volume defined by two concentric
spheres of radii ri and r j , centred on a particle of type α, is given by

n̄β
α = 4πn0cβ

∫ r j

ri

dr r 2gαβ(r). (8)

In practice, the measured reciprocal space data sets will be truncated at some finite
maximum value kmax owing to the finite measurement window function M(k) of the
diffractometer. In consequence, equation (5) needs to be modified and it is convenient to rewrite
it as

d ′
αβ(r) = 2

π

∫ ∞

0
dk k[Sαβ(k) − 1]M(k) sin(kr) = dαβ(r) ⊗ M(r) (9)

where dαβ(r) = 4πn0r [gαβ(r) − 1] and ⊗ denotes the one-dimensional convolution operator.
The dαβ(r) functions are then convoluted with a symmetrical M(r) function. For example, the
measurement window is usually represented by the step function M(k � kmax) = 1, M(k >

kmax) = 0 whence M(r) = kmax sinc(kmaxr)/π with sinc(x) ≡ sin(x)/x . Alternatively, the
adoption of a Lorch [45] modification function M(k) = sin(ak)/(ak) where a = π/kmax

gives M(r) = [Si(π(r + a)/a) − Si(π(r − a)/a)]/2πa where the sine integral Si(x) ≡∫ x
0 sin(t)/t dt [46]. Application of this modification function gives smoother pair correlation

functions at all r values by comparison with the use of a step modification function but leads to
a loss in resolution of the first peaks in r -space.

A total structure factor can also be written in terms of the Bhatia–Thornton [20] number–
number, concentration–concentration and number–concentration partial structure factors,
denoted by SNN(k), SCC(k) and SNC(k) respectively, where

F(k) = 〈b〉2[SNN(k) − 1] + cGecO(bGe − bO)2[{SCC(k)/cGecO} − 1]
+ 2〈b〉(bGe − bO)SNC(k) (10)

and 〈b〉 = cGebGe + cObO is the average scattering length. If the scattering matrix of
equation (2) is rewritten in terms of the Bhatia–Thornton SI J (k) (where I, J = N, C) then
the corresponding normalized determinant |An| = 0.016 i.e. the conditioning of the Bhatia–
Thornton partial structure factors is better than for the corresponding Faber–Ziman partial
structure factors. The relationship between these two sets of partial structure factors is given
by

SNN(k) = c2
GeSGeGe(k) + c2

OSOO(k) + 2cGecOSGeO(k)

SCC(k) = cGecO[1 + cGecO(SGeGe(k) + SOO(k) − 2SGeO(k))]
SNC(k) = cGecO[cGe(SGeGe(k) − SGeO(k)) − cO(SOO(k) − SGeO(k))].

(11)
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If bGe = bO then the incident neutrons in a diffraction experiment cannot distinguish between
the different scattering nuclei and inspection of equation (10) shows that the measured total
structure factor gives SNN(k) directly. The Fourier transform of SNN(k), the partial pair
distribution function gNN(r), describes the sites of the scattering nuclei, but does not distinguish
between the chemical species that decorate those sites, and therefore gives information on the
topological ordering in the glass. If 〈b〉 = 0, however, the measured total structure factor
will give SCC(k) directly. The Fourier transform of SCC(k), namely gCC(r), describes the
chemical ordering of the Ge and O atomic species. When there is a preference for like or
unlike neighbours at a given distance, corresponding positive or negative peaks will appear in
gCC(r) respectively. The Fourier transform of SNC(k), namely gNC(r), describes the correlation
between the sites described by gNN(r) and their occupancy by a given chemical species. A
more complete description of 2:1 binary systems using the Bhatia–Thornton formalism is given
elsewhere [47].

3. Experimental procedure

Germania glasses were made by heating ≈1.35 g of powdered natGeO2 (99.9999%, Alfa Aesar),
70GeO2 (97.22% enrichment) or 73GeO2 (95.51% enrichment) contained in platinum crucibles
(supported by an alumina crucible) at 1400 ◦C. The crucibles were heated in air in order
to minimize any change of sample stoichiometry which is increased if inert gas conditions
are used [48]. After ≈2 h, the crucibles were removed from the furnace and placed on a
copper block to cool to room temperature. The transparent, colourless samples are hygroscopic
and were therefore stored under dry conditions. A sample of commercial silica of natural
isotopic abundance was also chosen for investigation and the number density of this glass
n0 = 0.0665(2) Å

−3
.

The diffraction experiments were made using the D4C instrument [22] at the Institut
Laue-Langevin (ILL), Grenoble, operating with an incident wavelength of 0.49991(2) Å. The
samples were coarsely powdered and were held in a cylindrical vanadium container of 4.8 mm
internal diameter and 0.1 mm wall thickness. Diffraction patterns were taken for the samples
at 25(1) ◦C in their container, the empty container, the empty instrument, and a cylindrical
vanadium rod of diameter 6.35 mm for normalization purposes. Each diffraction pattern was
built up by making repeated scans of the detectors over the available range of scattering angles.
No deviations were observed between scans, apart from the expected statistical variations [49].
The intensity for a bar of neutron absorbing 10B4C with dimensions comparable to the sample
was also measured to account for the effect of sample self-shielding on the background count
rate at small scattering angles [50]. The data were carefully corrected to yield the total structure
factor for each sample and the usual self-consistency checks were performed [18, 51].

4. Results

The measured total structure factors are illustrated in figure 1 and the corresponding total
pair distribution functions are given in figure 2. As shown in these figures, good agreement
is found with the previous measurements of Desa et al [52] who studied the total structure
factor of natGeO2 by using an earlier version of the diffractometer D4 at the ILL with an
incident wavelength of 0.5 Å. The results for the F(k) functions given in figure 1 show that
as the scattering length of Ge decreases, the intensity of the first sharp diffraction peak at
kFSDP = 1.53(2) Å

−1
decreases whereas the intensity of the principal peak at kPP ≈ 2.67 Å

−1

increases. The results for the corresponding G(r) functions given in figure 2 show the extent
to which the smoothing achieved by use of a Lorch modification function, relative to a step

5
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Figure 1. The measured total structure factors, F(k), for glassy GeO2 at 25(1) ◦C. The solid circles
give the data points and are larger than the statistical errors. The solid curves give the result of
recombining the Sαβ(k) given by the solid (blue) curves in figure 5. The inset compares nat F(k) as
measured in the present work (solid circles) with the results of Desa et al [52] (solid curve).

modification function, comes at the expense of a loss in resolution which can be readily
discerned up to ≈5 Å.

The FSDP remains as a prominent feature at ≈1.54 Å
−1

in the first order difference
functions �F (i)

Ge (see figure 3). This demonstrates that the intermediate ranged atomic ordering
in GeO2 has a strong contribution from the correlations involving Ge atoms. The real space
difference function �G(1)

Ge is shown in figure 4. By comparison with the structure of crystalline
GeO2 [31] the first peak at 1.73(1) Å will arise from Ge–O correlations and a fit to this peak,
taking the window function M(k) into account (see equation (9)), gives n̄O

Ge = 3.8(1). As will
be shown by the full partial pair distribution function analysis of the data, the second and third
peaks in �G(1)

Ge at 3.16(2) and 4.43(2) Å have a strong contribution from gGeGe(r) and gGeO(r)

respectively.
The partial structure factors Sαβ(k) of figure 5 were obtained from the total structure factors

F(k) of figure 1 by direct inversion of the scattering matrix (see equation (4)) which means that
the total structure factors can be accurately reconstructed from the Sαβ(k) by using equation (2).
The Sαβ(k) are of high statistical quality, fully satisfy the sum rule and inequality relations given
by Edwards et al [43], and give rise to gαβ(r) functions that oscillate about the correct low r
limit of gαβ(r) = 0. The Sαβ(k) are also in good agreement at all k values with the Fourier
back-transforms of the corresponding gαβ(r) after the low r oscillations are set to this limit,
which indicates correct normalization of the data sets [53]. Furthermore, although the SGeβ(k)

functions are the least well conditioned of the set of three, they can be used to accurately
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Figure 2. The measured total pair distribution functions G(r) for glassy GeO2. The functions were
obtained by Fourier transforming the F(k) shown in figure 1 after truncating either (i) abruptly by
using a step function (solid light (red) curves) or (ii) smoothly by using a Lorch function (solid

dark curves) with kmax = 23.5 Å
−1

in both cases. The inset compares natG(r) as measured in the
present work (solid curve) with the results of Desa et al [52] (broken curve). Both data sets were
obtained by Fourier transforming the measured nat F(k) after the application of a Lorch function

with kmax ≈ 23.5 Å
−1

.

Table 1. Parameters obtained by fitting the Bhatia–Thornton pair correlation functions for glassy
GeO2. The rh I J (r) functions were fitted by using equations (12)–(14) and the maxima in the
ln |rh I J (r)| functions were fitted by using equation (15).

I J a0 (Å
−1

) a0
a (Å

−1
) a1 (Å

−1
) kPP (Å

−1
) AI J

b (Å) θI J (rad) R2 Range (Å)

NN 0.33(3) 0.26(4) 2.78(3) 2.67(1) 2.1(8) 2.8(4) 0.86 12.3–19.9
CC 0.24(1) 0.25(2) 2.62(1) 2.65(1) 6.3(5) −1.26(7) 0.94 4.7–15.4
NC 0.250(5) 0.26(1) 2.654(5) 2.66(1) 4.7(2) 1.66(5) 0.99 7.1–16.6

a From a straight line fit to the maxima in ln |rh I J (r)| versus r .
b ANN ≡ 2|ANN|, ACC ≡ 2cGecO|ACC| and ANC ≡ 2|ANC|.

account for the first order difference functions �F (i)
Ge (k) and �G(i)

Ge(r) (see figure 4) which is
important because several types of systematic error are reduced or essentially eliminated when
these difference functions are formed [54]. The results show that the FSDP in the measured
F(k), which is a ubiquitous feature of covalently bonded amorphous solids [55], appears at
1.53(2) Å

−1
and has a notable contribution from all three Sαβ(k). The principal peak in each

function occurs at kPP ≈ 2.66 Å
−1

(see table 1).
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the Fourier back-transforms of the corresponding �G(i)

Ge(r) functions after the small r oscillations

are set equal to the limiting �G(i)
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Figure 4. The measured first order difference function �G(1)
Ge (r) for glassy GeO2 obtained by direct

Fourier transformation of the �F(1)
Ge (k) function shown in figure 3 after the application of a step

modification function with kmax = 23.5 Å
−1

(solid dark curve). The function is compared with the
neutron weighted contributions from gGeGe(r) (solid light (red) curve) and gGeO(r) (broken (blue)
curve) (see equation (7)). There is no significant discrepancy between �G(1)

Ge (r) and the weighted
sum of the contributions from gGeGe(r) and gGeO(r) (solid circles).
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Figure 5. The measured Faber–Ziman partial structure factors Sαβ(k) for glassy GeO2 as
represented by the points with error bars. The functions were obtained from the F(k) shown in
figure 1 by direct inversion of the scattering matrix (see equation (4)). The solid (blue) curves give
the result of Fourier back-transforming the corresponding partial pair distribution functions, gαβ (r),
which are shown in figure 6.

The gαβ(r) for glassy GeO2 were obtained by Fourier transforming the measured Sαβ(k)

functions after they were spline fitted in order to reduce the effects of statistical noise. In the
case of gGeO(r), a correction was also made for the effect of a step modification function M(k)

by assuming a Gaussian first peak in dGeO(r), convoluting this peak with the corresponding
M(r) function (see equation (9)), and fitting the result to the experimental data. The artifacts
of M(r) were thus identified and the fitted Gaussian was smoothly joined to the higher r
features of the d ′

GeO(r) function obtained by direct Fourier transformation of the spline fitted
Sαβ(k). The gαβ(r) functions of figure 6 were thus obtained after setting the unphysical low
r oscillations to zero. They were then Fourier transformed into k-space in order to confirm
agreement with the measured Sαβ(k) (see figure 5). Full details of the procedure used to extract
gGeO(r) are described in [18].

5. Discussion

5.1. Structure of glassy GeO2

The first peak in gGeO(r) at rGeO = 1.73(1) Å gives a coordination number n̄O
Ge = 3.8(1).

As in several other diffraction studies of GeO2 [45, 52, 56], the measured Ge–O coordination
number is systematically less than four owing to the finite k-space resolution function of the
diffractometer for which a correction was not made [46, 57]. The first peak in gOO(r) at
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Figure 6. The measured partial pair distribution functions for glassy GeO2. The main panel
shows the functions gGeO(r) (solid black curve), gGeGe(r) (solid light (red) curve) and gOO(r)
(broken (blue) curve). The inset shows the Bhatia–Thornton partial pair distribution functions
which were obtained from the gαβ(r) functions of the main panel by using the relations gNN(r) =
c2

GegGeGe(r) + c2
OgOO(r) + 2cGecOgGeO(r), gCC(r) = cGecO[gGeGe(r) + gOO(r) − 2gGeO(r)] and

gNC(r) = cGe[gGeGe(r) − gGeO(r)] − cO[gOO(r) − gGeO(r)] where cGe = 1/3 and cO = 2/3.

rOO(r) = 2.83(1) Å gives a ratio rOO/rGeO = 1.636(11) that is in agreement with the ideal
tetrahedral ratio of

√
8/3 = 1.633. The tetrahedra share corners to give 4.1(2) Ge–Ge nearest

neighbours at rGeGe = 3.16(1) Å and there is an average of 6.7(1) O–O nearest neighbours
for the range 2.58 � r (Å) � 3.13. In general, the packing fraction of X atoms of radius
rX in an AX2 system is η′ = (8/9)n0πr 3

X and for a perfect tetrahedron of four spherical
touching X atoms, rXX/rAX = √

8/3 where rXX = 2rX. Hence the packing fraction of X
atoms in tetrahedral units, expressed as a function of rAX and the atomic number density n0,
is η′ = 16

√
2πn0r 3

AX/27
√

3 = 1.520n0r 3
AX [58]. The packing fraction of oxygen atoms in

tetrahedral units is thus found to be 0.495(9) in glassy GeO2. A mean inter-tetrahedral Ge–
Ô–Ge bond angle of 132(2)◦, which is consistent with the literature [26, 38, 44, 59, 60], is
obtained from the first Ge–O and Ge–Ge peak positions.

The measured Bhatia–Thornton partial structure factors SI J (k) for glassy GeO2 are shown
in figure 7 and the corresponding partial pair distribution functions gI J (r) are shown in the inset
to figure 6. All of the SI J (k) functions show a first sharp diffraction peak at kFSDP ≈ 1.53 Å

−1

that is most prominent for SNN(k). The associated intermediate range order in real space [61]
has a periodicity 2π/kFSDP and coherence length 2π/�kFSDP where �kFSDP is the full width at
half maximum of the FSDP. In the case of SNN(k), the periodicity and coherence length take
values of 4.13(3) and 8.98(13) Å respectively. The SCC(k) and SNC(k) functions both show
qualitative agreement with the corresponding functions for glassy GeSe2 and ZnCl2, which can
be emphasized by plotting them against the reduced scattering vector krAX where rAX is the
separation of unlike nearest neighbours (see figure 2 in [19] and figure 1 in [33]). Intriguingly,
SCC(k) shows a small but distinct FSDP which is indicative of concentration fluctuations on the
scale of the intermediate range order [18, 47, 62]. This feature is not anticipated for strong glass
forming systems such as GeO2 and SiO2 [63] and the origin of this feature for liquid and glassy
GeSe2 has proved difficult to trace [64–66]. It is now thought to result from coordination defects
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Figure 7. The measured Bhatia–Thornton partial structure factors, SI J (k), for glassy GeO2 (solid
dark curves—the statistical uncertainties are represented by the scatter in the data points) compared
with the first principles molecular dynamics results of Giacomazzi et al [38, 39] (broken (red)
curves) and the molecular dynamics simulations of Micoulaut et al [35] (open (blue) circles). The
partial structure factors are plotted as a function of the scaled scattering vector krGeO where rGeO

is the measured (1.73 Å) or calculated (1.78 Å for [38, 39] or 1.72 Å for [35]) nearest neighbour

Ge–O distance. Each of the measured functions has an FSDP at k ≈ 1.53 Å
−1

or krGeO ≈ 2.65.

and conformations of edge sharing tetrahedra [67, 68] that are not expected for GeO2 [39]. The
nature of the structural features in GeO2 that are responsible for the FSDP in SCC(k) therefore
requires further investigation. By contrast with the C–C and N–C partial structure factors, the
partial structure factor describing the topological ordering, SNN(k), shows large differences
between GeO2 and both GeSe2 and ZnCl2 which are more intermediate in character on the
fragility scale. In particular, the FSDP is stronger and the principal peak is weaker for GeO2

compared with the other glasses [19, 33].
To examine further the differences between the topological and chemical ordering at

distances greater than the nearest neighbour, it is useful to consider the theory for the asymptotic
decay of the pair correlation functions developed by Evans and co-workers who made a pole
analysis of the k-space solutions to the Ornstein–Zernike equations [69–72]. For a high density
ionic AX2 system described by pair potentials involving short ranged repulsive and long ranged
Coulomb terms, the pair distribution functions at large distances are expected to decay as [46]

rhNN(r) → 2|ANN| exp(−a0r) cos(a1r − θNN) (12)

rhCC(r) → 2cAcX|ACC| exp(−a0r) cos(a1r − θCC) (13)

rhNC(r) → 2|ANC| exp(−a0r) cos(a1r − θNC) (14)

where hNN(r) = gNN(r) − 1, hCC(r) = gCC(r) and hNC(r) = gNC. The amplitudes are related
by |ANN||ACC| = |ANC|2, the phases are related by θNN + θCC = 2θNC, the common decay
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length is given by a−1
0 , and the common wavelength of the oscillations is given by 2π/a1.

Alternatively, if the pair potentials also include van der Waals (dispersion) terms with an r−6

dependence, a power law decay is ultimately expected where rhNN(r) → r−5, rhCC(r) → r−9

and rhNC(r) → r−7 [46, 73]. This power law decay might be difficult to observe owing to
the relative weakness of the dispersion forces. However, the presence of these forces means
that equations (12)–(14) will not necessarily hold since they were derived for the case when
dispersion forces are absent. Furthermore, the presence of three or higher body interactions for
glass forming AX2 systems also provides complications but, provided the large r interactions
can be described by effective pair potentials that lead to simple poles [46], it is feasible
that the theory which leads to equations (12)–(14) will remain valid. Notwithstanding, these
equations provide a benchmark for analysing the large r dependence of the Bhatia–Thornton
pair distribution functions and for understanding the origin of extended range ordering in more
complicated systems that involve three-body potentials.

The hI J (r) functions for GeO2 were obtained by spline fitting and Fourier transforming
the SI J (k) after (i) the low k data points (k � 0.45 Å

−1
) were extrapolated to k = 0 by plotting

either [SNN(k)− 1], [SCC(k)/cGecO − 1] or SNC(k)/cGecO versus k2 and fitting a straight line at
small k [74] and (ii) a Lorch modification function was applied [45]. The resultant functions,
plotted as ln |rh I J (r)| versus r in figure 8, show that the N–N correlations have a greater
complexity than the N–C and C–C correlations over a wide range of distances and decay more
rapidly at lower r values. All of the functions show extended range ordering at large r which
persists to distances far exceeding the coherence length estimated from the width of an FSDP.
The decay coefficients a0 were estimated by fitting the repeated maxima at large r in figure 8,
that are least sensitive to the details of any smoothing procedure, to the straight line

ln |rh I J (r)| = −a0r + constant. (15)

The rh I J (r) functions were also fitted [46] by using equations (12)–(14) (see figure 8) and
the fitted parameters, the range used for the fits, and the R2 goodness-of-fit parameter are
summarized in table 1. The a0 values thus deduced represent upper limits owing to the k-
space resolution function of the diffractometer [46]. The results show that the extended range
oscillations for GeO2 decay exponentially with a common decay coefficient a0 and a periodicity
that is determined not by the position of the FSDP but by the position of the principal peak
i.e. the wavelength of the oscillations 2π/a1 ≈ 2π/kPP. The relations between the amplitudes
and phases predicted by the simple theory do not, however, appear to hold.

The values of the moments extracted from the small k fits to the SI J (k) functions for glassy
GeO2 are not quoted since they are prone to systematic error [74]. For information, we note that
the isothermal compressibility, κT, of glassy GeO2 at ambient pressure is 4.2×10−11 Pa−1 [75]
and the measured refractive index for light of wavelength 0.589 29 μm is n = 1.606 86 [76]
which leads to a Debye screening length 	D = 0.027 Å [74]. By assuming an ionic interaction
model with Ge4+ ions of polarizability 0.60 Å

3
[77], use of this refractive index in the Clausius–

Mossotti relation gives an O2− ion polarizability of 1.67 Å
3
.

5.2. Reconstruction of the x-ray and neutron total structure factors for glassy GeO2 by using
the measured Sαβ(k)

In order to interpret the x-ray diffraction data for glassy GeO2 taken under ambient conditions
and to aid in the interpretation of data taken under extreme conditions of temperature and
pressure [13, 78, 79], it is instructive to investigate the contribution of the partial structure
factors to the measured total x-ray structure factor where

SX(k) ≡ [FX(k) + 〈 f (k)〉2]/〈 f (k)〉2. (16)
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Figure 8. Decay of the Bhatia–Thornton partial pair distribution functions for glassy GeO2 as
shown by plotting ln |rh I J (r)| versus r (solid (blue) curves) in column (a) and rh I J (r) versus r
(solid (blue) curves) in column (b). For column (a), the coefficient a0 was obtained from the fitted
straight lines given by the broken (red) curves and for the N–N, N–C and C–C functions it takes

values of 0.26(4) Å
−1

(fit range 12.5–19.6 Å, R2 = 0.87), 0.26(1) Å
−1

(fit range 7.6–15.9 Å,

R2 = 0.99) and 0.25(2) Å
−1

(fit range 5.1–14.9 Å, R2 = 0.93) respectively. For column (b), the
broken (red) curves show the fits to the rh I J (r) functions at large r values.

In this expression, FX(k) is given by equation (1) with bGe and bO replaced by the x-ray form
factors fGe(k) and fO(k) for Ge and O respectively, and 〈 f (k)〉 = cGe fGe(k) + cO fO(k). The
FX(k) for glassy GeO2 at ambient conditions, as measured by Sampath et al [78] using high
energy x-ray diffraction, is illustrated in figure 9 together with its reconstruction from the x-ray
weighted Faber–Ziman partial structure factors measured by neutron diffraction. Within the
experimental error, agreement is found between the measured and reconstructed functions at
all k values except the smallest where differences between the actual and tabulated [80] atomic
form factors are expected to be greatest owing to the role of the outermost (valence) electrons in
bonding. For comparison, the contribution of the Sαβ(k) to the measured total neutron structure
factor, SN(k), for natGeO2 is shown in figure 10 where

natSN(k) ≡ [nat F(k) + 〈′′b〉2]/〈′′b〉2, (17)
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Figure 9. Reconstruction of the measured total x-ray structure factor SX(k) = AX
GeGe(k) +

AX
GeO(k) + AX

OO(k) for glassy GeO2 [78] (solid circles) by using the x-ray weighted Faber–Ziman
partial structure factors (solid (blue) curve). The contributions from the partial structure factors
are given by AX

GeGe(k) = c2
Ge fGe(k)2SGeGe(k)/〈 f (k)〉2 (solid light (red) curve), AX

GeO(k) =
2cGecO fGe(k) fO(k)SGeO(k)/〈 f (k)〉2 (solid dark curve) and AX

OO(k) = c2
O fO(k)2SOO(k)/〈 f (k)〉2

(broken (blue) curve) where the Sαβ(k) are taken from figure 5, 〈 f (k)〉 = cGe fGe(k) + cO fO(k),
and the atomic form factors fGe(k) and fO(k) are taken from [80]. The statistical uncertainties are
represented by the scatter in the data points.

〈′′b〉 = cGe
′′bGe + cObO and ′′bGe = b(natGe). In this expression, the weighting coefficients

for the Ge–Ge, Ge–O and O–O partial structure factors are independent of k and take values of
0.1710, 0.4851 and 0.3439 respectively.

A comparison of the results given in figures 9 and 10 show that, although the O–O
correlations have a larger weighting in natSN(k) compared with SX(k), the Ge–Ge and
Ge–O correlations still give the largest contribution to natSN(k) in the region of the FSDP.
It is therefore unsafe to attribute the changes observed with increasing pressure in the FSDP
region for SX(k) and natSN(k) to changes that are mostly associated with the oxygen atom
correlations [13]. The small principal peak observed in natSN(k) (figure 10) arises from an
almost complete cancellation of the large principal peaks in the neutron weighted Sαβ(k).

5.3. Comparison between the measured and simulated structure of glassy GeO2

The measured partial structure factors and pair distribution functions are compared with the
results from two recent molecular dynamics simulations in figures 7, 11 and 12. The first set of
simulations were made by Micoulaut et al [34, 35, 37] using the two body potential developed
by Oeffner and Elliott for GeO2 [81] and classical molecular dynamics (a similar approach was
adopted by Gutiérrez and Rogan [82] to study the density dependent structure of the liquid
phase of GeO2). The second set of simulations were made by Giacomazzi et al using first
principles molecular dynamics [38, 39]. Compared to experiment, both sets of simulations
give a higher first peak in gGeO(r) (24.4 [35] and 20.3 [38, 39] cf. 18.5) which yields a larger
Ge–O coordination number of four, features that can be attributed to the k-space resolution
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Figure 10. The contribution to the measured total neutron structure factor nat SN(k) = AN
GeGe(k) +

AN
GeO(k) + AN

OO(k) for glassy natGeO2 (solid (blue) curve) from the neutron weighted Faber–
Ziman partial structure factors where AN

GeGe(k) = c2
Ge

′′b2
Ge SGeGe(k)/〈′′b〉2 (solid light (red) curve),

AN
GeO(k) = 2cGecO

′′bGebOSGeO(k)/〈′′b〉2 (solid dark curve) and AN
OO(k) = c2

Ob2
O SOO(k)/〈′′b〉2

(broken (blue) curve). The Sαβ(k) are taken from figure 5, 〈′′b〉 = cGe
′′bGe + cObO, ′′bGe is the

bound coherent scattering length of natGe, and the measured natSN(k) function is reproduced by the
sum of the AN

αβ(k). The statistical uncertainties are represented by the scatter in the data points.

function of the diffractometer used in the experiments [46, 57]. Although a correction for the
resolution function was not made, one approach to this problem lies in the ‘moments method’
of Howells [83] which has been successfully applied to the case of liquid lithium [84]. The first
peak positions and coordination numbers obtained from the gαβ(r) functions are compared
with experiment in table 2. The experimental values obtained from the present work are in
excellent accord with the results obtained from previous diffraction experiments (see table 1
in [31]), with the exception of n̄O

O for which a value greater than six was obtained directly from
the measured gOO(r) function and not from a peak fitting procedure as used in previous work.
The first principles results give an elongated peak position of rGeO = 1.78 Å attributed to the
use of a generalized gradient approximation in the electronic structure calculations, which has
prompted the use of a scaled abscissa in figures 7, 11 and 12. The mean inter-tetrahedral Ge–Ô–
Ge bond angle of 132(2)◦ obtained from experiment compares with 159◦ [35] and 135◦ [38, 39].
Overall, there is good agreement between the measured and simulated pair correlation functions
although some important discrepancies occur.

For the classical molecular dynamics results, the most notable disagreement with
experiment manifests itself in a shift to high k of the FSDP position and reduction of the
principal peak height in the simulated SGeGe(k), a phase shift of the higher k oscillations in this
function (figure 11), a reduction in height and shift to high r of the first peak in the simulated
gGeGe(r), and a much broader distribution of the other features in this function (figure 12). In
consequence, the Ge–Ô–Ge bond angle is too large and the relative distribution of the centres
of the Ge(O1/2)4 tetrahedra on an intermediate length scale is not correctly described, thus
leading to systematic errors in a description of the topological ordering [37]. The failure to
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Figure 11. Comparison of the measured Faber–Ziman partial structure factors, Sαβ(k), for glassy
GeO2 (solid dark curves) with the first principles molecular dynamics results of Giacomazzi et al
[38, 39] (broken (red) curves) and the molecular dynamics simulations of Micoulaut et al [35] (open
(blue) circles). The data sets are plotted as a function of the scaled scattering vector krGeO where
rGeO is the measured (1.73 Å) or calculated (1.78 Å for [38, 39] or 1.72 Å for [35]) nearest neighbour
Ge–O distance.

Table 2. Parameters obtained from the first peak in the measured and simulated gαβ (r) for glassy
GeO2. The coordination numbers were calculated using a cut-off value equal to the minimum after
the first main peak in gαβ(r).

Correlation α–β rαβ (Å) n̄β
α Range (Å) Reference

GeO 1.73(1) 3.8(1) 1.53–1.96 Present work
1.72 4.1 1.60–2.30 [35]
1.69 4.00 1.5–2.2 [36]
1.78 4.01 1.53–2.25 [39]

GeGe 3.16(1) 4.1(2) 2.58–3.56 Present work
3.32 4.4 2.20–3.60 [35]
3.21 4.06 2.7–3.6 [36]
3.25 4.1 2.70–3.73 [39]

OO 2.83(1) 6.7(1) 2.58–3.13 Present work
2.81 8.2 2.25–3.30 [35]
2.78 6.44 2.5–3.2 [36]
2.88 7.8 2.11–3.40 [39]

reproduce these experimental features may help to account for the severe over estimation of
the self-diffusion coefficients obtained from simulations of the molten phase [35]. Classical
molecular dynamics simulations of glassy GeO2 have also been made using a pair potential with
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Figure 12. Comparison of the measured partial pair distribution functions, gαβ(r), for glassy GeO2

(solid dark curves) with the first principles molecular dynamics results of Giacomazzi et al [38, 39]
(broken (red) curves) and the molecular dynamics simulations of Micoulaut et al [35] (open (blue)
circles). The data sets are plotted as a function of the scaled distance r/rGeO where rGeO is the
measured (1.73 Å) or calculated (1.78 Å for [38, 39] or 1.72 Å for [35]) nearest neighbour Ge–O
distance.

a Morse-type short ranged term [36] and give an improved Ge–Ge nearest neighbour distance
and Ge–Ô–Ge bond angle of 133◦ although the Ge–O and O–O distances are too small (see
table 2). The diffusion coefficients calculated for the liquid phase are significantly smaller than
those obtained in [35], in better agreement with experiment.

For the first principles molecular dynamics results, the agreement with experiment is
improved although the small number of atoms used in the simulation (168) leads to large
statistical uncertainties in the region of the FSDP [38, 39]. A small FSDP in SCC(k) is
nevertheless found, in agreement with experiment (figure 7). In real space, the most notable
discrepancies between the first principles and experimental results (figure 12) occur with
respect to the relative sharpness of the measured first peak in gOO(r) and the small mismatch
between the measured and simulated gGeGe(r) in the second peak region. The vibrational
properties of the simulated network give spectra that are in good overall agreement with those
measured by using inelastic neutron scattering, infrared spectroscopy and Raman scattering.
The theoretical spectra do, however, show an overall shift to lower frequencies which is
attributed to the use of a generalized gradient approximation in the set-up of the density
functional theory [38].

5.4. Relation between the structure and fragility of AX2 glass forming systems

To investigate the relation between the structure of GeO2 and other strong network forming
AX2 glasses based on tetrahedral A(X1/2)4 units, the total structure factor for SiO2, FSi(k),
was measured in the same neutron diffraction experiment used to obtain the partial structure
factors for GeO2. Silica is often regarded as the canonical network forming glass and is of wide
scientific and technological significance [1, 14]. The total structure factor for silica was then
reconstructed by using the measured Sαβ(k) for germania where F rec

Si (k) = c2
Sib

2
Si[SGeGe(k) −
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Figure 13. The measured total structure factor for glassy SiO2, FSi(k), (solid curve with vertical
error bars—the latter are smaller than the curve thickness at all k values) compared with its
reconstruction, F rec

Si (k), (broken curve) from the measured partial structure factors for glassy GeO2

given in figure 5 (see text). Both data sets are plotted as a function of the scaled scattering vector
krAX where rAX is the separation of unlike nearest neighbours.

1]+2cSicObSibO[SGeO(k)−1]+c2
Ob2

O[SOO(k)−1] and bSi = 4.1491(10) fm [42]. The measured
FSi(k) and its reconstruction F rec

Si (k) are shown in figure 13 and the corresponding Fourier
transforms, the total pair distribution functions GSi(r) and Grec

Si (r), are shown in figure 14. In
these figures, scaled abscissae of krAX and r/rAX are used, where rAX is the nearest neighbour
bond length, to provide the best match between the data sets.

The structure of silica is also based on an open network of corner sharing A(X1/2)4

tetrahedra, where the nearest neighbour Si–O and O–O distances are 1.60(1) and
2.62(1) Å respectively (see figure 14). The mean inter-tetrahedral bond angle Si–Ô–Si is,
however, larger at 148◦ [60] and the packing fraction of the oxygen atoms is smaller at
η′ = 0.414(8). The relative arrangement of the A(X1/2)4 tetrahedra is therefore different
and manifests itself on both the intermediate and extended range as shown by a higher and
sharper FSDP in FSi(k) compared with F rec

Si (k) together with a lower and broader principal
peak. Neutron scattering studies hint at concomitant differences between the microscopic
dynamics of GeO2 and SiO2 in the liquid phase [85]. The same general features nevertheless
occur in the total structure factors and pair distribution functions for both strong glasses.

Polyamorphic phase transitions are often associated with a distinct change in the
structure of a liquid or glass from strong to fragile with increase of density [4, 14, 15]
and tetrahedrally bonded systems remain the most promising candidates for studying this
phenomenon experimentally [86, 87]. Furthermore, two or more competing length scales are
built into simple model pair potentials that are used in calculations to examine the feasibility of
liquid–liquid phase transitions [88–90].

A comparison of the present results with those for glassy ZnCl2 [19] show that it is the
relative importance of the FSDP and principal peak that most readily enables a distinction to be
made between the diffraction patterns measured for the strong glass GeO2 and the intermediate
glass ZnCl2—the FSDP in SNN(k) for ZnCl2 is much smaller and the principal peak is much
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Figure 14. The measured total pair distribution function, GSi(r), for glassy SiO2 (solid curve)
compared with its reconstruction, G rec

Si (r), from the data for glassy GeO2 (broken curve). Both
functions were obtained by Fourier transforming the total structure factors shown in figure 13 by

using a step function with kmax = 23.5 Å
−1

and are plotted as a function of the scaled distance
r/rAX.

larger than for GeO2 (see figure 1 of [33]). Like GeO2, the network of glassy ZnCl2 is also made
from corner sharing A(X1/2)4 tetrahedra but the mean inter-tetrahedral bond angle Zn–Ĉl–Zn
is smaller at 111(1)◦ and the anion packing fraction is much higher at η′ = 0.647(9). Although
homopolar bonds and edge sharing A(X1/2)4 tetrahedra are a feature of glassy GeSe2 [17, 18],
the measured SI J (k) are comparable to those for glassy ZnCl2 (see figure 2 of [19]) with
an FSDP and principal peak that are a little sharper and a little weaker, respectively. On
the fragility scale, GeSe2 is also more intermediate in character than GeO2 [91] and, if the
influence of homopolar bonds is ignored, an anion packing fraction η′ = 0.667(17) is found
using rGeSe = 2.36(2) Å with a mean inter-tetrahedral bond angle Ge–Ŝe–Ge of 98(1)◦. When
glassy GeSe2 is subjected to a pressure increasing from ambient to 9.3 GPa, the FSDP in SNN(k)

vanishes and the principal peak gains in intensity [92]. Similar behaviour for SNN(k) is observed
for the liquid phase of GeSe2 as the density is increased at constant temperature by applying
a pressure between 0.5 and 4.1 GPa at 1120 K [93]. When the temperature of liquid GeSe2

is increased at much lower pressures, the density also increases as the network collapses [94].
The FSDP in SNN(k) diminishes in intensity relative to the principal peak and shifts to higher
k values as the temperature is raised to 1100 ◦C and the observed trend in the overall shape of
SNN(k) [95] mimics that found in the liquid phase as Ge is added to GeSe2 to form GeSe [96].
In both situations, the Ge(Se1/2)4 tetrahedra are broken down [97, 98].

When pressures up to 15 GPa are applied to GeO2, x-ray and neutron diffraction
experiments show that the FSDP moves to higher k and merges with the principal peak as the
network first collapses and the germanium coordination number eventually increases [13], thus
enhancing the relative importance of the principal peak. For silica, the measured diffraction
pattern features a more prominent FSDP and weaker principal peak (see figure 13) and much
higher pressures are required to induce a network collapse compared to germania [11, 13].
Hence there is a competition between the intermediate and extended range ordering in
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tetrahedral network forming AX2 glasses, the former being favoured for open network
structures with large A–X̂–A inter-tetrahedral bond angles and the latter being favoured for
close packed structures when A–X̂–A is correspondingly small. This competition is won by the
extended range ordering when the density is increased and the system becomes more fragile.

6. Conclusions

The full set of partial structure factors has been accurately measured for glassy GeO2 by using
the method of isotopic substitution in neutron diffraction. The results show that the network
structure is based on corner sharing Ge(O1/2)4 tetrahedra with a mean inter-tetrahedral Ge–Ô–
Ge bond angle of 132(2)◦. The measured Sαβ(k) can be used to reproduce the structure factor
measured by using high energy x-ray diffraction and a comparison with molecular dynamics
simulations shows that improved models for the network structure can be developed. The
results suggest that there is a competition between the intermediate and extended range ordering
in network AX2 glasses that is won by the latter with increasing glass fragility.
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